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Abstract

Since chemotherapy began as a treatment for cancer in the 1940s, cancer drug development has
become a multi-billion dollar industry. Combination chemotherapy remains the leading treatment for
advanced cancers, and cancer drug research and clinical trials are enormous expenses for pharmaceutical
companies and the government. We propose an analytics approach for the analysis and design of clinical
trials that can discover drug combinations with significant improvements for overall survival and toxicity.
We first build a comprehensive database of clinical trials. We then use this database to develop statistical
models from earlier trials that are capable of predicting the survival and toxicity of new combinations of
drugs. Then, using these statistical models, we develop optimization models that select novel treatment
regimens that could be tested in clinical trials, based on the totality of data available on existing
combinations. We present evidence for advanced gastric and gastroesophageal cancers that the proposed
analytics approach a) leads to accurate predictions of survival and toxicity outcomes of clinical trials
as long as the drugs used have been seen before in different combinations, b) suggests novel treatment
regimens that balance survival and toxicity and take into account the uncertainty in our predictions,
and c) outperforms the trials run in current practice to give survival improvements of several months.
Ultimately, our analytics approach offers promise for improving life expectancy and quality of life for
cancer patients at low cost.

1 Introduction

Cancer is a leading cause of death worldwide, accounting for 7.6 million deaths in 2008. This number is

projected to continue rising, with an estimated 13.1 million deaths in 2030 (World Health Organization

2012). The prognosis for many advanced cancers is grim unless they are caught at an early stage, when

the tumor is contained and can still be surgically removed. Often, at the time of diagnosis, the cancer is

sufficiently advanced that it has metastasized to other organs and can no longer be surgically removed,

often leaving drug therapy or best supportive care as the only treatment options.
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Since chemotherapy began as a treatment for cancer in the 1940s, cancer drug development has become

a multi-billion dollar industry. For instance, Avastin alone generated $2.9 billion in revenues for Genen-

tech in 2008. Though most improvements in the effectiveness of chemotherapy treatments have come from

new drug development, one of the largest breakthroughs in cancer treatment occurred in 1965, when a

team of researchers suggested the idea of combination chemotherapy (Chabner and Roberts 2005). Today,

most successful chemotherapy treatments for advanced cancers use multiple drugs simultaneously; specif-

ically, in this work we found that nearly 80% of all chemotherapy clinical trials for advanced gastric and

gastroesophageal cancers have tested combined treatments.

Finding effective new combination chemotherapy treatments is challenging — there are a huge number

of potential drug combinations, especially when considering different dosages and dosing schedules for

each drug. Trials are also expensive, with average costs in many cases exceeding $10, 000 per patient

enrolled (Emanuel et al. 2003); these costs are often incurred either by pharmaceutical companies or the

government. Further, comparing clinical trial results is complicated by the fact that the trials are run

with different patient populations; establishing one regimen as superior to another involves running a large

randomized study, at a cost of millions of dollars. In this work, we develop low-cost techniques for suggesting

new treatment combinations.

Our aspiration in this paper is to propose an analytics approach for the analysis and design of clinical

trials that provides insights into what is the best currently available drug combination to treat a particular

form of cancer and how to design new clinical trials that can discover improved drug combinations. The

key contributions of the paper are:

(1) We developed a database for advanced gastric and gastroesophageal cancers from papers published

in the period 1979-2012. Surprisingly and to the best of our knowledge, such a database did not exist prior

to this study.

(2) We construct statistical models trained on previous randomized and single-arm clinical trials to

predict the outcomes of clinical trials (survival and toxicity) before they are run, when the trials’ drugs

have been tested before but in different combinations. One of the most important findings of the paper is

that the survival outcomes of clinical trials can to a large extent be predicted (R2 = 0.60 for out-of-sample

predictions) in advance, as long as the drugs used have been seen before in different combinations.

(3)We propose an optimization-based methodology of suggesting novel treatment regimens that balance

survival and toxicity and take into account the uncertainty in our predictions. We design a number of
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quality measures to evaluate the suggestions made by our approach, and we demonstrate that the proposed

approach outperforms the current clinical practice for selecting new combination chemotherapy treatments.

(4) We provide evidence that our analytics based methods a) identify clinical trials that are unlikely to

succeed, thus avoiding low-quality experiments, saving money and time and extending patients’ lives and

b) determine best treatments to date taking into account toxicity and survival tradeoffs as well as patient

demographics, thus enabling doctor and patients to make more informed decisions regarding best available

treatments.

Overall, we feel that the paper provides evidence that the combination of data, statistical models and

optimization can open new frontiers in the design of clinical trials. While the results presented here are

for a specific form of cancer (gastric and gastroesophageal), the methodology is widely applicable to other

forms of cancer.

Medical practitioners and researchers in the fields of data mining and machine learning have a rich history

of predicting clinical outcomes. For instance, techniques for prediction of patient survival range from simple

approaches like logistic regression to more sophisticated ones such as artificial neural networks and decision

trees (Ohno-Machado 2001). Most commonly, these prediction models are trained on individual patient

records and used to predict the clinical outcome of an unseen patient, often yielding impressive out-of-

sample predictions (Burke 1997, Delen et al. 2005, Lee et al. 2003, Hurria et al. 2011, Jefferson et al. 1997).

Areas of particular promise involve incorporating biomarker and genetic information into individualized

chemotherapy outcome predictions (Efferth and Volm 2005, Phan et al. 2009). Individualized predictions

represent a useful tool to patients choosing between multiple treatment options (Zhao et al. 2012, van’t

Veer and Bernards 2008), and when trained on clinical trial outcomes for a particular treatment can be

used to identify promising patient populations to test that treatment on (Zhao et al. 2011) or to identify if

that treatment is promising for a Phase III clinical trial (De Ridder 2005). However, such models do not

enable predictions of outcomes for patients treated with previously unseen chemotherapy regimens, limiting

their usefulness in planning clinical trials with new drug combinations.

The field of meta-regression involves building models of clinical trial outcomes such as patient survival

or toxicities, trained on patient demographics and trial drug information. These regressions are used

to complement meta-analyses, explaining statistical heterogeneity between the effect sizes computed from

randomized clinical trials (Thompson and Higgins 2002). Though in structure meta-regressions are identical

to the prediction models we build, representing trial outcomes as a function of trial properties, to date
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they have mainly been used as tools to explain differences in existing randomized trials, and evaluations

of the predictiveness of the regression models are not performed. Like meta-analyses, meta-regressions

are performed on a small subset of the clinical trials for a given disease, often containing just a few drug

combinations. Even when a wide range drug combinations are considered, meta-regressions typically do not

contain enough drug-related variables to be useful in proposing new trials. For instance, Hsu et al. (2012)

predicts 1-year overall survival using only three variables to describe the drug combination in the clinical

trial; new combination chemotherapy trials could not be proposed using the results of this meta-regression.

Because approaches driven by patient outcomes such as medical prognosis and meta-regression have

limited usefulness in planning clinical trials with new drug combinations, other methodologies are more

commonly applied in the treatment design process. Studies of drug combinations in animals and in vitro

are often cited as motivations for combination chemotherapy trials (Chao et al. 2006, Iwase et al. 2011,

Lee et al. 2009), and molecular simulation is a well developed methodology for identifying synergism in

drug combinations (Chou 2006). Though such approaches are attractive because they can evaluate any

proposed treatment regimen, they are limited because they don’t incorporate treatment outcomes from

actual patients. Further, identifying the best possible combination chemotherapy regimen with either

methodology involves enumerating all possible drug combinations, which is resource intensive.

To the best of our knowledge, this paper presents the first prediction model to date that is trained on

clinical trial outcomes and contains enough detail about the drug combination and dosages to enable the

design of novel combination chemotherapy regimens. We attain this by significantly broadening the scope of

meta-regression, training our model not only on randomized clinical trials but also on non-randomized trials

for a given form of cancer and performing out-of-sample validation of the predictions returned. This model

enables us to propose new combination chemotherapy clinical trials via optimization. To our knowledge,

this is a new approach to the design of clinical trials, an important problem facing the pharmaceutical

industry, the government, and the healthcare industry.

Throughout this paper, we focus on gastric and gastroesophageal cancers. Not only are these cancers

very important — gastric cancer is the second leading cause of cancer death in the world and esophageal

cancer is the sixth (Jemal et al. 2011) — but there is no single chemotherapy regimen widely considered to

be the standard or best treatment for these cancers (Wagner 2006, Wong and Cunningham 2009, NCCN

2013).
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2 Data Collection

In this section, we describe the inclusion/exclusion rules we used and the data we collected to build our

database. Definitions of some of the common clinical trial terminologies we use are given in Table 1.

Term Definition
Arm A group or subgroup of patients in a trial that receives a

specific treatment.
Controlled trial A type of trial in which the treatment given is compared to

a standard treatment.
Cycle An interval of time during which the treatment of the trial is

consistent.
Exclusion criteria The factors that prevent a person from participating in a

clinical trial.
Inclusion criteria The factors that allow a person to participate in a clinical

study.
Phase The classification of a clinical trial. Phase I studies identify

safe dosages, while Phase II and III studies determine if a
treatment is effective.

Randomized trial A type of trial in which patients are randomly assigned to
one of several arms.

Sequential treatment A treatment regimen in which patients transition from one
treatment to another after a pre-specified number of
treatment cycles.

Table 1: Definitions of some common clinical trial terminology.

In this study, we seek to include a wide range of clinical trials, subject to the following inclusion criteria:

(1) Phase I/II, Phase II or Phase III clinical trials for advanced or metastatic gastric or gastroesophageal

cancer, (2) trials published no later than March 2012, the study cutoff date, (3) trials published in the

English language. Notably, these criteria include non-randomized clinical trials; all published meta-analyses

we are aware of for gastric cancer (e.g. Hermans (1993), Earle and Maroun (1999), Mari (2000), Wagner

(2006)) are limited to randomized controlled trials. While including non-randomized trials provides us with

a significantly larger set of clinical trial outcomes and the ability to generate predictions for a broader

range of chemotherapy drug combinations, this comes at the price of needing to control for differences in

demographics and other factors between different clinical trials.

Exclusion criteria were: (1) trials testing sequential treatments, (2) trials that involve the application

of radiation therapy,1 (3) trials that apply curative or adjuvant chemotherapy, and (4) trials to treat
1Radiotherapy is not recommended for metastatic gastric cancer patients (NCCN 2013), and through PubMed and Cochrane
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gastrointestinal stromal tumors.

To locate candidate papers for our database, we performed searches on PubMed, the Cochrane Central

Register of Controlled Trials, and the Cochrane Database of Systematic Reviews. In the Cochrane systems,

we searched for either MESH term “Stomach Neoplasms” or MESH term “Esophageal Neoplasms” with the

qualifier “Drug Therapy.” In PubMed, we searched for “gastr*” or “stomach” in the title and “advanced” or

“metastatic” in the title and “phase” or “randomized trial” or “randomised trial” in the title. These searches

yielded 350 papers that met the inclusion criteria for this study.

After this search through databases of clinical trial papers, we further expanded our set of papers by

searching through the references of papers that met our inclusion criteria. This reference search yielded 56

additional papers that met the inclusion criteria for this study. In total, our systematic literature review

yielded 406 papers for gastric cancer that we deemed appropriate for our approach. Since there are often

multiple papers published regarding the same clinical trial, we verified that each clinical trial included was

unique.

2.1 Manual Data Collection

We manually extracted data from clinical trials, and extracted data values were inputted into a database.

Values not reported in the clinical trial report were marked as such in the database. We extracted clinical

trial outcome measures of interest that capture the efficacy and toxicity of each treatment. Several measures

of treatment efficacy (e.g. tumor response rate, time until tumor progression, survival time) are commonly

reported in clinical trials. A review of the primary objectives of the Phase III trials in our database indicated

that for the majority of these trials (62%), the primary objective was to demonstrate improvement in terms

of the median overall survival (OS) of patients in the treatment group. As a result, this is the metric we

have chosen as our measure of efficacy.2 To capture the toxic effects of treatment, we also extracted the

fraction of patients experiencing any toxicity at Grade 3/4 or Grade 4, designating severe, life-threatening,

or disabling toxicities (National Cancer Institute 2006).

For each drug in a given trial’s chemotherapy treatment, the drug name, dosage level for each application,

number of applications per cycle, and cycle length were collected. We also extracted many covariates that

searches for stomach neoplasms and radiotherapy, we only found three clinical trials using radiotherapy for metastatic gastric
cancer.

2The full survival distributions of all patients were available for only 340/483 (70.4%) of treatment arms, as opposed to
the median which was available for 453/483 (93.8%). Given this limitation as well as the established use of median survival
as a primary endpoint in Phase III trials, we have chosen to proceed with the median.
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have been previously investigated for their effects on response rate or overall survival in prior chemotherapy

clinical trials for advanced gastric cancer. To limit bias associated with missing information about a

clinical trial, we limited ourselves to variables that are widely reported in clinical trials. These variables

are summarized in Table 2.

We chose not to collect many less commonly reported covariates that have also been investigated for

their effects on response and survival, including cancer extent, histology, a patient’s history of prior adjuvant

therapy and surgery, and further details of patients’ initial conditions, such as their baseline bilirubin levels

or body surface areas (Ajani et al. 2010, Bang et al. 2010, Kang et al. 2009, Koizumi et al. 2008). However,

the variables we do collect enable us to control for sources of endogeneity, in which patient and physician

decision rules in selecting treatments might limit the generalizability of model results. For example, we col-

lect performance status, a factor used by physicians in selecting treatments (NCCN 2013). Although other

factors, such as comorbidities and patient preferences for toxicities, are important in treatment decisions

for the general population (NCCN 2013), clinical trials uniformly exclude patients with severe comorbidi-

ties and toxicity preferences do not affect actual survival or toxicity outcomes. The only other treatment

decision we do not account for in our models is that patients with HER2-positive cancers should be treated

with trastuzumab (NCCN 2013), while this treatment is ineffective in other patients. We address this issue

by excluding trastuzumab from the clinical trial suggestions we make in Section 4.

In Table 2, we record the patient demographics we collected as well as trial outcomes. We note that

the set of toxicities reported varies across trials, and that the database contains a total of 7,360 toxicity

entries, averaging 15 reported toxicities per trial arm.

2.2 An Overall Toxicity Score

As described in Section 2.1, we extracted the proportion of patients in a trial who experience each individual

toxicity at Grade 3 or 4. In this section, we present a methodology for combining these individual toxicity

proportions into a clinically relevant score that captures the overall toxicity of a treatment. The motivation

for an overall toxicity score is that there are 370 different possible averse events from cancer treatments

(National Cancer Institute 2006). Instead of building a model for each of these toxicities, some of which

are significantly more severe than others, we use an overall toxicity score.

To gain insight into the rules that clinical decision makers apply in deciding whether a treatment has an

acceptable level of toxicity, we referred to guidelines established in Phase I clinical trials. The primary goal

7



Variable Average Value Range % Reported
Patient Demographics
Fraction male 0.72 0.29 – 1.00 97.9
Fraction of patients with prior
palliative chemotherapy

0.13 0.00 – 1.00 98.1

Median age (years) 59.6 46 – 80 99.2
Weighted performance status1 0.86 0.11 – 2.00 84.1
Fraction of patients with primary
tumor in the stomach

0.90 0.00 – 1.00 94.8

Fraction of patients with primary
tumor in the gastroesophageal
junction

0.07 0.00 – 1.00 94.2

Non-drug trial information
Fraction of study authors from each
country (43 different variables)

Country
Dependent

0.00 - 1.00 95.62

Fraction of study authors from an
Asian country

0.43 0.00 – 1.00 95.6

Number of patients 54.4 11 – 521 100.0
Publication year 2003 1979 – 2012 100.0
Trial outcomes
Median overall survival (months) 9.2 1.8 – 22.6 93.8
Incidence of every Grade 3/4 or
Grade 4 toxicity

Toxicity Dependent3

1 A composite score of the Eastern Cooperative Oncology Group (ECOG) performance status of patients in a
clinical trial. See Appendix A.1 for details.
2 The remaining studies listed affiliated institutions without linking authors to institutions.
3 See Appendix A.2 for details on data preprocessing for blood toxicities.

Table 2: Non-drug variables extracted from gastric and gastroesophageal
cancer clinical trials. These variables, together with the drug variables, were
inputted into a database.

of these early studies is to assess drugs for safety and tolerability on small populations and to determine an

acceptable dosage level to use in later trials (Golan et al. 2008). These trials enroll patients at increasing

dosage levels until the toxicity becomes unacceptable. The Patients and Methods sections of Phase I trials

specify a set of so-called dose-limiting toxicities (DLTs). If a patient experiences any one of the toxicities in

this set at the specified grade, he or she is said to have experienced a DLT. When the proportion of patients

with a DLT exceeds a pre-determined threshold, the toxicity is considered “too high,” and a lower dose is

indicated for future trials. From these Phase I trials, we can learn the toxicities and grades that clinical

trial designers consider the most clinically relevant, and design a composite toxicity score to represent the

fraction of patients with at least one DLT during treatment.

Based on a review of the 20 clinical trials meeting our inclusion criteria that also presented a Phase

I study (so-called combined Phase I/II trials), we identified the following set of DLTs to include in the
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calculation of our composite toxicity score:

• Any Grade 3 or Grade 4 non-blood toxicity, excluding alopecia, nausea, and vomiting. 18

of 20 trials stated that all Grade 3/4 non-blood toxicities are DLTs, except some specified

toxicities. Alopecia was excluded in all 18 trials and nausea/vomiting were excluded in 12

(67%). The next most frequently excluded toxicity was anorexia, which was excluded in 5

trials (28%).

• Any Grade 4 blood toxicity. Of the 20 trials reviewed, 17 (85%) defined Grade 4 neutropenia

as a DLT, 16 (80%) defined Grade 4 thrombocytopenia as a DLT, 7 (35%) defined Grade

4 leukopenia as a DLT, and 4 (20%) defined Grade 4 anemia as a DLT. Only one trial

defined Grade 3 blood toxicities as DLTs, so we chose to exclude this level of blood toxicity

from our definition of DLT.

The threshold for the proportion of patients with a DLT that constitutes an unacceptable level of toxicity

ranges from 33% to 67% over the set of Phase I trials considered, indicating the degree of variability among

decision makers regarding where the threshold should be set for deciding when a trial is “too toxic.” The

thresholds of 33% and 50% were the most common, each occurring in 8 of 19 (42%) of studies that published

a threshold. Details on the computation of the proportion of patients experiencing a DLT are presented in

Appendix A.3.

3 Statistical Models for Clinical Trials

This section describes the development and testing of statistical models that predict the outcomes of clinical

trials. These models are capable of taking a proposed clinical trial involving chemotherapy drugs that have

been seen previously in different combinations and generating predictions of patient outcomes. In contrast

with meta-analysis and meta-regression of clinical data, whose primary aim is the synthesis and summary

of existing trials, our objective is accurate prediction on unseen future trials (out-of-sample prediction).

3.1 Data and Variables

We used the data we extracted from published clinical trials described in Table 2 to develop the statistical

models. This data can be classified into four categories: patient demographics, non-drug trial information,

the chemotherapy treatment, and trial outcomes.
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One challenge of developing statistical models using data from different clinical trials comes from the

patient characteristic data. The patient populations can vary significantly from one trial to the next. For

instance, some clinical trials enroll healthier patients than others, making it difficult to determine whether

differences in outcomes across trials are actually due to different treatments or only differences in the

patients. To account for this, we include in our model all of the patient demographic and non-drug trial

variables listed in Table 2, excluding the number of patients in the trial. The reporting frequencies for each

of these variables is given in Table 2, and missing values are replaced by their variable means before model

building.

For each treatment protocol we also define a set of variables to capture the chemotherapy drugs used

and their dosage schedules. There exists considerable variation in dosage schedules across chemotherapy

trials. For instance, consider two different trials that both use the common drug fluorouracil3: in the first,

it is administered 3, 000mg/m2 once a week, and in the second, at 200mg/m2 once a day. To allow for

the possibility that these different schedules might lead to different survival and toxicity outcomes, we

define variables that describe not only whether or not the drug is used (a binary variable), but we also

define variables for both the instantaneous and average dosages for each drug in a given treatment. The

instantaneous dose is defined as the dose of drug d administered in a single session, and the average dose

of a drug d is defined as the average dose delivered each week.

Lastly, for every clinical trial arm we define outcome variables to be the median overall survival and the

combined toxicity score defined in Section 2.2. Trial arms without an outcome variable are removed prior

to building or testing the corresponding models.

3.2 Statistical Models

We implement and test several statistical learning techniques to develop models that predict clinical trial

outcomes. Information extracted from results of previously published clinical trials serve as the training

database from which the model parameters are learned. Then, given a vector of inputs corresponding to

patient characteristics and chemotherapy treatment variables for a newly proposed trial, the models will

produce predictions of the outcomes for the new trial.

The first class of models we consider are regularized linear regression models. If we let x represent

a vector of inputs for a proposed trial (i.e. patient, trial, and treatment variables) and y represent a
3Lutz et al. (2007) and Thuss-Patience et al. (2005)
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particular outcome measure we would like to predict (e.g. median survival), then this class of models

assumes a relationship of the form y = βTx + β0 + ε, for some unknown vector of coefficients β, intercept

β0, and error term ε. We assume that the noise terms are independent and identically distributed across

trial arms, as tests on the model residuals have indicated only mild heteroskedasticity of variance. It is

well known that in settings with a relatively small ratio of data samples to predictor variables, regularized

models help to reduce the variability in the model parameters. We estimate the regression coefficients β

and β0 by minimizing the following objective:

min
β,β0

N∑
i=1

(βT (xi) + β0 − yi)2 + λ‖β‖p, (1)

where λ is a regularization parameter that limits the complexity of the model and prevents overfitting to

the training data, thereby improving prediction accuracy on future unseen trials. We choose the value of λ

from among a set of 50 candidates through 10-fold cross-validation on the training set.4

The choice of norm p leads to two different algorithms. Setting p = 2 yields the more traditional Ridge

Regression algorithm (Hoerl and Kennard 1970), popular historically for its computational simplicity. More

recently the choice of p = 1, known as the Lasso, has gained popularity due to its tendency to induce sparsity

in the solution (Tibshirani 1996). We present results for both variants below.

The use of regularized linear models provides significant advantages over more sophisticated models in

terms of simplicity, ease of interpretation, and resistance to overfitting. Nevertheless, there is a risk that

they will miss significant nonlinear effects and interactions in the data. Therefore, we also implement and

test two additional techniques which are better suited to handle nonlinear relationships: Random Forests

and Support Vector Machines (SVM). For Random Forests (Breiman 2001), we use the nominal values

recommended by Hastie et al. (2008) for the number of trees to grow (500) and minimum node size (5).

The number of variable candidates to sample at each split is chosen through 10-fold cross-validation on the

training set from among exponentially spaced values centered at d/3, where d is the total number of input

variables. For SVM, following the approach of Hsu et al. (2003), we adopt the radial basis function kernel

and select the regularization parameter C and kernel parameter γ through 10-fold cross validation over an

exponentially spaced 2-D grid of candidates (C = 2−5, 2−3, . . . , 215, γ = 2−15, 2−13, . . . , 23).
4Candidate values of lambda are exponentially spaced between λmax/10

4 and λmax. For p = 1, we take λmax to be the
smallest value for which all coefficients β are zero. For p = 2, we take λmax to be the largest eigenvalue of XTX, where X is
the matrix of input variables in the training set.
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All models were built and evaluated with the statistical language R version 2.15.3 (R Core Team 2012)

using packages glmnet (Friedman et al. 2010), randomForest (Liaw and Wiener 2002), and e1071 (Meyer

et al. 2012).

3.3 Results

Following the methodology of Section 2, we collected and extracted data from a set of 406 published journal

articles from 1979–2012 describing the treatment methods and patient outcomes for a total of 483 treatment

arms of gastric and gastroesophageal cancer clinical trials. Within this set, 72 different chemotherapy drugs

were used in a wide variety of combinations and dosages, with 19 drugs appearing in five or more trial arms.

To compare our statistical models and evaluate their ability to predict well on unseen trials, we imple-

ment a sequential testing methodology. We begin by sorting all of the variables extracted from published

clinical trials in order of their publication date. We then only use the data from prior published trials to

predict the patient outcomes for each clinical trial arm. Note that we never use data from another arm of

the same clinical trial to predict any clinical trial arm. This chronological approach to testing evaluates our

model’s capability to do exactly what will be required of it in practice: predict a future trial outcome using

only the data available from the past. Following this procedure, we develop models to predict the median

survival as well as the overall toxicity score. We begin our sequential testing one third of the way through

the set of 483 total treatment arms, setting aside the first third (161) to use solely for model building. Of

the remaining 322 arms, we first remove those for which the outcome is not available, leaving 315 arms for

survival and 278 for toxicity. We then predict outcomes only for those using drugs that have been seen at

least once in previous trials (albeit possibly in different combinations and dosages). This provides us with

287 data points to evaluate the survival models, and 253 to evaluate the toxicity models.

The survival models are evaluated by calculating the root mean square error (RMSE) between the

predicted and actual trial outcomes. They are compared against a naive predictor (labeled “Baseline”),

which ignores all trial details and reports the average of previously observed outcomes as its prediction.

Model performance is presented in terms of the coefficient of determination (R2) of our prediction models

relative to this baseline. To illustrate changes in model performance over time, we calculate the R2 for

each model over all test points within a 4-year sliding window. These are shown in Figure 1, along with

the values of the RMSE and R2 over the most recent 4-year window of sequential testing.

To evaluate the toxicity models, we recall from the discussion of Section 2.2 that the toxicity of a
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Figure 1: [Left] Sequential out-of-sample prediction accuracy of survival mod-
els calculated over 4-year sliding windows ending in the date shown, reported
as the coefficient of determination (R2) of our prediction models. Ordinary
least squares is not shown because all values are below 0.4. [Right] Root mean
square prediction error (RMSE) and R2 for the most recent 4-year window
of data (March 2008–March 2012), which includes 132 test trial arms.

treatment is considered manageable as long as the proportion of patients experiencing a dose-limiting

toxicity is less than a fixed threshold – a typical value used in Phase I studies for this threshold is 0.5.

Thus we evaluate our toxicity models on their ability to distinguish between trials with “high toxicity”

(score > 0.5) and those with “low toxicity” (score ≤ 0.5). The metric we will adopt for this assessment is

the area under the receiver-operating-characteristic curve (AUC). The AUC can be naturally interpreted

as the probability that our models will correctly distinguish between a randomly chosen test trial arm with

high toxicity and a randomly chosen test trial arm with low toxicity. As was the case for survival, we

calculate the AUC for each model over a 4-year sliding window, with the results shown in Figure 2.

We see in Figures 1 and 2 that models for survival and toxicity all show a trend of improving pre-

dictability over time, which indicates our models are becoming more powerful as additional data is added

to the training set. We see that the Ridge Regression and Lasso models perform the strongest in both

cases – with model R2 values approaching 0.6 for survival, and AUC values above 0.825 for predicting high

toxicity, we have evidence that the survival and toxicity outcomes for clinical trials can be reasonably well

predicted ahead of time, as long as the drugs have been seen before.

Ordinary (unregularized) least squares performs very poorly at predicting survival, which is not sur-
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Figure 2: [Left] Sequential out-of-sample classification accuracy of toxicity
models calculated over 4-year sliding windows ending in the date shown,
reported as the area under the curve (AUC) for predicting whether a trial
will have high toxicity (score > 0.5). [Right] AUC for the most recent 4
year window of data (March 2008–March 2012), which includes 119 test trial
arms. Of these, 21/119 (17.6%) actually had high toxicity.

prising given its tendency to overfit given the small ratio of predictor variables to training samples; its

stronger performance in predicting toxicity indicates that it still has some ability to rank treatments in

terms of their toxicity (which is what the AUC metric measures). Nevertheless, it is outperformed by

both of the regularized linear models, and there is no reason to pursue it further. Finally, we note that

the performance of the Random Forests algorithm is not competitive with the regularized linear models in

terms of predicting either survival or toxicity.

As a result of this performance assessment, we identified the regularized linear models as the best

candidates for inclusion in our optimization models. They are both the strongest and simplest of the

models we evaluated. We conducted additional testing to determine whether the explicit inclusion of

pairwise interaction terms between variables improved either of the models for survival and toxicity in a

significant way. We found that out-of-sample results were not significantly improved by either the addition

of drug/drug interaction terms or drug/non-drug interaction terms, and therefore chose to proceed with

the simpler models without interaction terms. Since both the Ridge Regression and Lasso models show

very similar performance in Figures 1 and 2, and because the Ridge Regression model lends itself directly

to the computation of a model uncertainty measure (see Section 4.2) that we use in the design of clinical
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Figure 3: Performance of the Ridge Regression models for survival and tox-
icity over the most recent 4 years of data (March 2008–March 2012) [Left]
Predicted vs. actual values for survival model (n = 132). [Right] ROC curve
for high toxicity (score > 0.5) predictions, of which 21 are actually high
(n = 119).

trials, we selected the Ridge Regression models to carry forward into the optimization. Depictions of the

predicted vs. actual values for survival along with the receiver-operating-characteristic (ROC) curve for

toxicity model are shown for the Ridge Regression models in Figure 3.

4 Design of Clinical Trials

This section describes an analytical approach for designing clinical trials using mixed integer and robust

optimization, using the extracted data and the predictive statistical models we have developed in Sections

2 and 3. We describe the mixed integer optimization model we use and then present a robust version of this

model, which provides more conservative suggestions to account for uncertainty in the statistical models.

Lastly, we present some results of the models and compare them to the real selections made by oncologists.

4.1 Model Formulations

Given the current data from clinical trials and the current predictive models that we have constructed, we

would like to select the next best trial to perform. The determination of the next “best” trial can be made

in different ways. Here, we choose to use the predictive models presented in Section 3 to select the trial
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that maximizes survival, limiting the proportion of patients with a dose-limiting toxicity to no more than

some value t. Our reasoning for this is that for the majority of Phase III trials in our database, the stated

primary objective was to demonstrate improvement in the median overall survival (OS) of patients in the

treatment group.

To use the predictive models in an optimization problem, we must provide values for each variable

in these models. We fix the patient characteristic variables described in Table 2 to their mean values

across all trials. Because our statistical models include no demographic/drug interaction terms, the patient

characteristics uniformly affect the predicted overall survival and toxicity of each suggested combination.

The suggested treatments for the average patient population with toxicity limit t are therefore identical to

the suggested treatments for patient population P with toxicity limit t + ∆P , for some constant ∆P . A

clinical trial decision maker can optimize for any desired population by appropriately adjusting the toxicity

limit. In our database, |∆P | ≤ 0.1 in 85.7% of treatment arms, so optimization suggestions for the average

population are applicable for most clinical trial populations.

We then define decision variables for the chemotherapy variables described in Section 3.1. Suppose

there are n possible chemotherapy drugs to select from when designing a clinical trial. We will assume

here that we are trying to select a clinical trial to perform using only existing drugs that were used in the

predictive models (we start including a drug in the predictive models when it has been seen in at least one

previous trial arm). We define three variables for each drug, corresponding to the chemotherapy treatment

variables used in the statistical models: a binary indicator variable zi to indicate whether drug i is or is not

part of the trial (zi = 1 if and only if drug i is part of the optimal chemotherapy regimen), a continuous

variable ui to indicate the instantaneous dose of drug i that should be administered in a single session, and

a continuous variable vi to indicate the average dose of drug i that should be delivered each week.

We will then use the regularized linear models from Section 3.2 with these decision variables as inputs.

Let the model for overall survival (OS) be denoted by (β̄
z
)′z+(β̄

u
)′u+(β̄

v
)′v, where the superscripts denote

the corresponding coefficients for the decision variables (the binary drug variables z, the instantaneous dose

variables u, and the average dose variables v). Similarly, we have a model for overall toxicity, which we

will denote by (τ̄ z)′z + (τ̄u)′u + (τ̄ v)′v. Note that these models are all linear in the variables.

We can then select the next best trial to perform by using the following mixed integer optimization
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model:

max
z,u,v

(β̄
z
)′z + (β̄

u
)′u + (β̄

v
)′v (1)

subject to (τ̄ z)′z + (τ̄u)′u + (τ̄ v)′v ≤ t, (1a)
n∑

i=1

zi = N, (1b)

Az ≤ b, (1c)

cizi ≤ ui ≤ Cizi, i = 1, . . . , n, (1d)

dizi ≤ vi ≤ Dizi, i = 1, . . . , n, (1e)

(ui, vi) ∈ Ωi, i = 1, . . . , n, (1f)

zi ∈ {0, 1}, i = 1, . . . , n. (1g)

The objective of (1) maximizes the predicted overall survival of the selected chemotherapy regimen. Con-

straint (1a) bounds the predicted toxicity by a constant t. This constant values can be defined based on

common values used in Phase I/II trials, or can be varied to suggest trials with a range of predicted toxicity.

In Section 4.3, we present results from varying the toxicity limits. Constraint (1b) sets the total number

of drugs in the selected trial to N , which can be varied to select trials with different numbers of drugs.

We also include constraints (1c) to constrain the drug combinations that can be selected. In our models,

we disallow any therapy whose drugs match those in a previous study, and we incorporate the generally

accepted guidelines for selecting combination chemotherapy regimens (Page and Takimoto 2002, Pratt 1994,

Golan et al. 2008).5 As discussed in Section 2.1, we also eliminate the drug trastuzumab because it is only

indicated for the subpopulation of HER2-positive patients. We leave research into effective treatments for

this subpopulation as future work.

Additional requirements could be added to constraints (1c), though we do not do so in this work.

Such additional constraints may be necessary due to known toxicities and properties of the drugs, or these

constraints can be used to add preferences of the business or research group running the clinical trial. For

example, a pharmaceutical company may want to require a new drug they have developed and only tested
5We limit the drug combinations to contain no more than one drug from the classes of drugs used for gastric cancer. Fur-

ther, we disallow drug combinations that appear no more than once in our database and were discouraged in the guidelines.
The following pairs of classes were disallowed from being used together: anthracycline/camptothecin, alkylating agent/taxane,
taxane/topoisomerase II inhibitor, antimetabolite/protein kinase, and camptothecin/topoisomerase II inhibitor. If a chemo-
protectant drug is used, it must be used with a drug from the antimetabolite class that is not capecitabine.
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a few times to be used in the trial. In this case, the optimal solution will be the best drug combination

containing the necessary drug.

Constraints (1d) give a lower bound ci and a upper bound Ci for each drug’s instantaneous dose ui,

given that the drug i has been selected. These bounds have been defined through phase I clinical trials.

Constraints (1e) similarly provide upper and lower bounds for each drug’s average dose vi. Constraints

(1f) limit ui and vi to belong to a feasible set Ωi, which is defined to be the set of all combinations of

instantaneous and average doses that have been used in prior clinical trials. This is important since the

instantaneous dose and the average dose are often not independent, so this forces the dosage for a particular

drug to be realistic. Lastly, constraints (1g) define z to be a binary vector of decision variables. For the

remainder of the paper, we will refer to the feasible set of (1), that is the set of all vectors z,u, and v

satisfying constraints (1a)–(1g), as Ŵ.

While the optimization model (1) finds the single best trial to suggest, we are also interested in building

a model to suggest k different trials at once. One reason for this is for recommending trials when multiple

trials will be run at once. We would like to suggest different trials that will all provide us with interesting

information, before knowing the results of each of the other trials. Additionally, we would also like to see

all of the best k trials since there are often several different drug combinations with similar overall survival

predictions, and one is not necessarily superior to the others. We can thus alter model (1) to propose k

different trials. We do this by including k vectors of binary decision variables, {z1, z2, . . . , zk}, k vectors

of instantaneous dose decision variables, {u1,u2, . . . ,uk}, and k vectors of average dose decision variables,

{v1,v2, . . . ,vk}. We then solve the following problem:

max
zj ,uj ,vj ,∀j

k∑
j=1

(β̄
z
)′zj + (β̄

u
)′uj + (β̄

v
)′vj (2)

subject to (zj ,uj ,vj) ∈ Ŵ, j = 1, . . . , k, (2a)

zj1 6= zj2 j1 = 1, . . . , k − 1, j2 = j1 + 1, . . . , k, (2b)

The objective of (2) aims to maximize the total survival of the k different trials. Constraints (2a) require

each selected trial meet the constraints of (1). Constraints (2b) prevent any pair of suggested trials from

having identical drugs, and can be implemented using standard techniques; we will not elaborate further
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here because in practice our models will be solved using the column generation approach described in

Appendix B. In the remainder of the paper, we will refer to all variables satisfying constraints (2a) and

(2b) as the feasible set W. Note that this formulation requires the k trials to all be different, but they

could be very similar. The k trials are only required to have one different drug between any two trials. We

will see in the next section how more diverse trials can be selected via robust optimization.

4.2 A Robust Optimization Model

While the models presented in Section 4.1 correctly select the best trials using the predictive models, the

optimal solution can be very sensitive to the coefficients of the regularized linear model for survival (β̄).

To handle this, we use robust optimization to allow β̄ to vary in an uncertainty set. For computational

simplicity, we allow the binary drug coefficients to vary, while keeping the instantaneous and average dose

coefficients fixed.

The use of linear models allows us to parameterize the drug-specific uncertainties. Let X denote the

matrix of input variables in our training set (rows correspond to trial arms, columns to variables), and let

Y be a vector of median overall survivals. We then use the following equation motivated by Bishop (2006)

as an approximate uncertainty matrix for the regularized Ridge estimator: ΣR = σ2(X′X + λI)−1. Here

σ2 is the noise variance, for which an estimate s2 can be derived from the residuals of the model fit. Note

that when we refer to the training set here, we mean the training set up to the moment in time that we are

making predictions. We calculate the uncertainty metrics at each prediction in our sequential approach, so

the uncertainties are obtained only using prior data. For a given drug i, consider a vector xi whose only

nonzero components are the dosage variables corresponding to drug i; for these elements we set the binary

variable to 1, and the dosage variables to the average dosage administered for that drug in the training

set. Then the effect of using drug i at its average dose on the median overall survival has an uncertainty

σ2i = x′iΣRxi.

Denoting the feasible set of (2) by W, we can rewrite (2) as

max
(zj ,uj ,vj)∈W

k∑
j=1

[(β̄
z
)′zj + (β̄

u
)′uj + (β̄

v
)′vj ] (3)

We can then reformulate this as the following robust problem:
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max
(zj ,uj ,vj)∈W

min
βz

k∑
j=1

[(βz)′zj + (β̄
u
)′uj + (β̄

v
)′vj ] (4)

subject to
|βz

i − β̄z
i |

σi
≤ Γ, i = 1, . . . , n, (4a)

n∑
i=1

|βz
i − β̄z

i |
σi

≤ Γ
√
N, (4b)

where βz is now a vector of variables, and β̄
z, β̄

u, and β̄
v are the coefficient values of the predictive

models that have been constructed for the binary variables, instantaneous dose variables, and average dose

variables, respectively. The parameter Γ controls how conservative we would like to be. Constraints (4a)

restrict each coefficient βzi to be at most Γσi larger or smaller than the nominal coefficient β̄zi . Constraint

(4b) further restricts the sum of the normalized deviations of βzi from β̄zi to be no more than Γ
√
N , where

N is the number of drugs that can be selected in a single trial. This constraint prevents the robust model

from being too conservative. Our uncertainty set is a simple interval set and is motivated by the Central

Limit Theorem (Bandi and Bertsimas 2012).

For a fixed set of (zj ,uj ,vj) ∈W, the inner optimization problem selects the worst possible vector of

coefficients βz that is feasible, given the constraints limiting βz to be close to β̄
z. The outer optimization

problem then tries to find the best set of trials (zj ,uj ,vj) ∈ W given this worst case approach. This

problem is thus robust in the sense that we are trying to maximize the worst case scenario in a given

uncertainty set. This approach combines Wald’s maximin model (Wald 1945) with a parameter to control

how conservative the solution is, or the price of robustness (Bertsimas and Sim 2004).

Constraint (4b) also serves to encourage the k trials to be different from each other. If many different

drugs are selected in the k trials, many coefficients will contribute to the objective and the minimization

will try to push all of these coefficients to their worst case bounds. However, constraint (4b) will prevent

this from happening since it constrains the total deviation of the coefficients from the nominal values to

be less than Γ
√
N . On the contrary, if only a few drugs are selected, only a few coefficients will contribute

to the objective, and there will be fewer nonzero terms in the sum of constraint (4b). Because the right

hand side of the constraint remains the same regardless of how many different drugs are selected, the

constraint becomes less restrictive with fewer terms in the sum. This is similar to diversification in financial
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applications, in that risk is reduced by diversifying a portfolio. Evidence of this will be shown in the results

section.

To solve (4), we first reformulate the problem to eliminate all absolute values, using standard linear

optimization techniques (Bertsimas and Tsitsiklis 1997). We then take the dual of the inner problem,

resulting in a mixed integer optimization problem that can be solved as before. Note that (3) is a special

case of the robust problem (4), where Γ is set to zero.

The optimization model (4) solves very slowly when asked for even a modest number of suggestions,

due to the symmetry in the formulation of W. In practice, we use a fast column generation-based approach

to generate approximate solutions to (4), as detailed in Appendix B.

4.3 Optimization Results

To evaluate the strength of the optimization and predictive models in designing promising clinical trials,

we solve the optimization models sequentially with time, as was done in Section 3.3 with the prediction

models. We start making and evaluating our suggestions one third of the way through our database of

clinical trials, starting in 2002. For all results, we fix the number of trial recommendations made at any

point in time to k = 20, a value that is large enough to ensure several of the suggestions match future

trials. Throughout this section, we will present results for triplet drug combinations (N = 3). There

are several reasons for this. First, it has been shown in the literature that combination chemotherapy is

superior to single drug treatment (Wagner 2006). This is supported by our database, in which single drug

treatments have a mean overall survival of 6.9 months, compared to a mean overall survival of 10.1 months

for combination chemotherapy. Additionally, nearly 80% of all chemotherapy trials for advanced gastric

and gastroesophageal cancers have tested combined treatments. Since our goal is to recommend future

clinical trials, it is thus logical for us to suggest combination regimens. Additionally, there are many more

potential triplet chemotherapy combinations than doublet chemotherapy combinations, so our techniques

have more to offer in this space. Furthermore, studies have shown a statistically significant benefit in using

triplet regimens compared to doublet regimens (Wagner 2006, Hsu et al. 2012).

We note that evaluating the quality of suggestions made by our optimization model is an inherently

difficult task. If a trial that our models suggest at one point in time is actually performed in the future,

we can of course use the actual outcome of the trial to evaluate our suggestion. However, given the small

number of clinical trials that have been conducted relative to the large number of feasible drug and dosage
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combinations, the likelihood of a proposed trial matching an actual trial performed in the future is small. To

address this challenge, we have developed a set of three metrics to use in evaluating our models over time.

Each metric evaluates our models from a different perspective, and each comes with its own advantages

and limitations. But by considering all metrics together and comparing our performance on these metrics

against the performance of what we call “current practice,” we provide evidence that our methodology

indeed has merit. We describe and present results for each of these metrics below.

The first metric we define is the Matching Metric, which compares a trial proposal against all trials that

were actually run after the date it was suggested. If the drugs proposed in the trial are the same as the

set of drugs in a trial that was actually performed, we consider it a match. Note that we do not require

the dosages to be identical to consider the trial a match. If a proposed trial matches one or more future

trials, we score the suggestion for survival by taking the average survival over the set of future trials that

it matches. For toxicity, we score the suggestion by the fraction of matching trials with low toxicity (DLT

score below chosen threshold). If a proposed trial does not match any future trials, it does not get a score.

As we slide sequentially through time, we calculate a score for every trial proposal we make (or no score if

there are no future matches) and record the result. To obtain an overall score for survival and toxicity over

the entire evaluation period (2002–2012), we average the scores over all proposals that matched at least

one future trial.

We compare our model’s survival and toxicity scores for the Matching Metric to the baseline performance

of the “current practice,” defined as follows. At each point in time, we take the set of all drug combinations

that were actually run in the future, and which could have been suggested by our optimization model at

the time.6 Then, we score each of these combinations using the same procedure as above (i.e. for survival,

average the actual survival of all future trials using that combination, and for toxicity, record the fraction

of future trials that use that combination with low toxicity), and add them to the evaluation set. To obtain

an overall survival and toxicity score for the “current practice,” we then average the scores over all trials in

the evaluation set. The interpretation of this score is that if a clinical trial decision maker were to randomly

select drug combinations to test out of those which have been actually run in the future, this would be his

or her expected score for the Matching Metric. We present results for the Matching Metric in Figure 4.

There are two parameters that can be adjusted in the optimization model to affect the nature of
6For a trial testing N drugs to be a candidate in the optimization model, all N drugs must have been seen at least once

prior to the evaluation date, and the drug combination must not have been seen previously.
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Figure 4: Average scores for Matching Metric for optimization suggestions
made from 2002–2012. Each line corresponds to a different value of the
robustness parameter Γ, and the points correspond to different right-hand-
side values t for the toxicity constraint in the set {0.2, 0.3, 0.4, 0.5, 0.6, 0.7}.

the combinations we suggest: the threshold t for the right hand side of the toxicity constraint, and the

robustness parameter Γ. For values of Γ in {0,1,2,3}, the current practice performance is dominated by

that of the optimization model. In particular, with (Γ = 0, t = 0.5), the matching trials suggested by the

optimization model have average survival that is 3.3 months greater than current practice, with comparable

toxicity. In addition, with (Γ = 0, t = 0.2), the matching trials suggested by the optimization model have

slightly greater survival than those suggested in current practice, and no instances of high toxicity. This

evidence suggests our methods are indeed selecting high-performing clinical trials before they are being run

in practice.

Figure 4 shows that the best results for the Matching Metric are achieved at Γ = 0. We note, however,

that strong performance is still observed with positive values of Γ, and there are several reasons why a

more conservative decision maker might decide to select a nonzero Γ. First, the fraction of trials suggested

by the optimization that match future trials increases with increasing Γ, as shown in Table 3. A higher

match rate might provide a conservative decision maker with greater confidence that the performance in the

future will be as strong as that indicated by the Matching Metric. Another motivation for the selection of

a positive Γ would be to increase the diversity among the set of proposed trials. For example, if a decision

maker has a set of 20 trials to plan over the next two years, he or she may prefer to diversify the trials

as much as possible in order to minimize risk. We measure the diversity of a set of combinations as the
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average number of drug in common between each pair of combinations in the set; the higher the number

in common, the less diversity. Average number of drugs in common calculated over the entire evaluation

period (2002–2012) are given in Table 3, which shows that diversity increases substantially with increasing

values of Γ.

Γ Number of Matches /
Number of Suggestions

Average Drugs in
Common

0 494 / 6440 (7.7%) 1.389
1 599 / 6440 (9.3%) 1.245
2 673 / 6440 (10.5%) 1.124
3 710 / 6440 (11.0%) 1.020

Table 3: Match rate and average number of drugs in common as a function
of the robustness parameter Γ for a fixed toxicity right hand side t = 0.4.

We have thus far considered average values for the Matching Metric taken over the entire evaluation

period. Additional insight can be obtained by evaluating how the quality of proposed trials changes over

time. To evaluate performance at a fixed point in time, we take the set of k = 20 suggestions returned by

the optimization model, score them according to the Matching Metric, and average them to get a score for

that time. Similarly, we compute a “current practice” score by averaging the scores for all combinations that

could have been recommended by the optimization at that point. To obtain an upper bound on performance,

we calculate the mean of the best m future trials that could have been recommended by the optimization at

that point (in terms of overall survival), where m is the number of optimization suggestions that actually

matched. In Figure 5, we present the results for the Matching Metric for survival at (Γ = 0, t = 0.4), and

note that similar trends are observed at other values of Γ and t.

Prior to 2004, the trials suggested by the optimization are not performing as well as those of the “current

practice.” They begin improving in 2004, and by 2006 the suggestions made by optimization are strongly

outperforming those made by current practice. This improvement in performance is not surprising given

the improvements we observed in our predictive models over this same time period, as shown in Section 3.3.

We note that the current practice score does show some improvement in outcomes over this period, but the

improvement is not as rapid as that shown by the optimization model.

The strength of the Matching Metric is that it directly evaluates the output of our optimization model

using real future trial data, when such an evaluation is possible. Unfortunately, it has three limitations: (1)

it does not capture the regret of not suggesting trials that are actually run in the future and turn out to be
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Figure 5: Matching Metric evaluated on optimization suggestions made from
2002–2012 (Γ = 0, t = 0.4). Average actual survival of our optimization
suggestions is compared to the best possible score and a current practice
baseline.

promising, (2) it cannot evaluate the quality of suggestions which have not been run in the future, which as

discussed above can be a significant fraction of our suggestions, and (3) it does not take the dosages of our

suggested combinations into account. We will address each of these limitations by defining two additional

performance metrics, beginning with the Ranking Metric. The motivation behind the Ranking Metric is to

assess how well our models can identify the top performing trials out of all those that have actually been run

in the future. To calculate the metric, we begin by taking the set of all clinical trials that were actually run

after a fixed evaluation date and which could have been suggested by our optimization model on that date.

Then, we use our predictive models built with the data prior to the evaluation date to rank the treatments

in order of their expected outcomes. Finally, we calculate our score for the Ranking Metric by taking the

top quartile of the treatments on our ranked list, and averaging their true outcomes. Our performance on

the Ranking Metric can again be compared against two baseline scores: the “best possible” score, obtained

by ranking the treatments in order of actual outcomes and then computing the average of the top quartile,

and the “current practice” score, calculated as a mean over all treatments on the list. The interpretation

of this score is that if a decision maker randomly ordered the list of all trials that are actually seen in the

future, this would be his or her expected score. The Ranking Metric is shown on the left in Figure 6. It is

important to point out that the apparent drop-off in performance at the end of the evaluation window is an

artifact that can be attributed to the small number of “future trials” in our database that can be evaluated
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after this point in time.

Neither the Matching nor the Ranking metrics can evaluate the quality of our suggestions that have

not been run in the future. This is undoubtedly the most difficult assessment to make, because we cannot

conduct actual clinical trials using all these suggestions. As a result, we turn to the only measure of

performance we have available: how well do these suggested trials perform, when evaluated using the final

March 2012 regression model trained on the full data set. We call this metric the Final Model Metric. We

feel this metric is important as it is the only one capable of evaluating trial suggestions that have not yet

been run in the future. To calculate the performance for this metric we take the set of k suggestions made

by our optimization model, use the final regression model to estimate their true outcomes, and average the

results. There are three baseline scores to compare against for this metric: (1) the “best possible” score,

calculated by solving optimization problem using only the drugs and dosages that were known to the model

at the evaluation date, but by taking the model coefficients from the March 2012 regression model and using

Γ = 0, (2) the “random trial” score, calculated by taking all the feasible drug combinations that could have

been suggested, evaluating them using the final model and average dosages, and averaging the results, and

(3) the “current practice” score, calculated by taking all drug combinations that could have been suggested

and were actually run in the future, evaluating them using the final model, and averaging the results. The

Final Model Metric is shown on the right in Figure 6. For all metrics, the performance of the optimization

model starts out weakly, but improves rapidly over the course of the 10-year evaluation period.
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Figure 6: Ranking Metric (left) and Final Model Metric (right) evaluations
of optimization suggestions made from 2002–2012 (Γ = 0, t = 0.4).
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5 Additional Modeling Applications

In this section, we describe two additional applications of our modeling approach that we feel positively

contribute to the design of clinical trials. These are just two of many possible ways our models could be

used to assist clinical trial decision makers.

5.1 Identifying Clinical Trials that are Unlikely to Succeed

A natural application of the statistical models developed in Section 3 involves determining whether a

proposed clinical trial is likely to meet its clinical goals. This is a challenging problem in general, because

of the difficulty of predicting clinical trial outcomes, making our models useful for decision makers faced

with deciding whether to fund a proposed clinical trial. Avoiding trials that are unlikely to succeed could be

beneficial not only to clinical decision makers, who stand to save significant resources, but also to patients.

To determine if our models can be used to identify trials that are unpromising, we performed an out-of-

sample experiment in which we predicted the median overall survival of each trial before it was run, based

on all previous trial outcomes. Using this prediction along with the computed error x′ΣRx, where x is

the trial data and ΣR is the uncertainty matrix defined in Section 4.2, we calculated the probability that

the current trial’s median overall survival exceeds the 5-year rolling average median overall survival. In

our experiment, we fix a threshold p and flag any trial with probability less than p of exceeding the rolling

average overall survival.

Table 4 displays the properties of the flagged trials for a variety of threshold probabilities p. The

proposed model is effective at identifying trials that are unlikely to outperform recent trials. At threshold

p = 0.163, the 10 trials flagged all underperformed the rolling average, while with p = 0.256, 30 of 40

flagged trials did not achieve the mean, eight were above average but not in the fourth quartile for survival,

and two were in the top quartile of recent trials.

Though the decision maker in this experiment is simplistic, ranking trials without regard for their

demographics or their toxicity outcomes, trial outcome predictions and uncertainties provide a useful tool

for decision makers in computing the probability that trial objectives will be achieved.
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Num. Flagged p Below Average Third Quartile Fourth Quartile
10 0.163 10 0 0
20 0.223 15 4 1
30 0.238 22 6 2
40 0.256 30 8 2
50 0.278 38 8 4
60 0.305 45 11 4

Table 4: Out-of-sample accuracy in identifying unpromising trials before
they are performed.

5.2 Determining the Best Chemotherapy Treatments to Date

Identifying the best chemotherapy regimen currently available for advanced gastric cancer is a task that has

proven challenging for traditional meta-analysis, but it is one that our methods are well suited to address.

Through the use of regression models, which leverage a large database of clinical trial outcomes, we are able

to control for differences in demographics and other factors across different clinical trials, enabling direct

comparison of results that were not from the same randomized experiment.

To determine the best chemotherapy treatments to date, we first note that selecting a chemotherapy

treatment for cancer involves a tradeoff between survival time and toxic effects that affect quality of life.

Since individual patients will differ in how they value these competing objectives, the notion of trying

to find a single “best” regimen is not correct. Instead, we seek the set of treatments that make up the

“efficient frontier” of chemotherapy treatments for a given cancer: a particular treatment is included in

the efficient frontier only if there are no other available treatments with both higher survival and lower

toxicity. On the left panel of Figure 7, we present the survival and toxicity of all large trial arms in

our database (with the number of patients exceeding the mean of 54.4) for which both outcome variables

are available, and highlight those that make up the efficient frontier. A significant concern with this

representation is that the demographics of the patient populations differ from one trial to the next, making

a direct comparison between them difficult. To control for this effect, we use the coefficients from the

Ridge Regression models for survival and toxicity trained on the entire data set, which are available at the

conclusion of the sequential testing performed in Section 3.3. To give an example, the fraction of patients

with prior palliative chemotherapy has a regression coefficient βi of −1.91 months in the survival model.

A trial with 80% prior palliative chemotherapy, instead of the population average of 13% (from Table 2),

would be expected to have −1.91 ∗ (0.13− 0.80) = 1.28 months lower survival. We correct for this effect by
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adding 1.28 months to the survival outcome of this trial. After adjusting the survival and toxicity values

for all demographic variables in this manner, we present an updated efficient frontier in the right panel of

Figure 7.
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Figure 7: Survival and dose-limiting toxicity for clinical trial arms with ≥ 55
patients, before (left) and after (right) adjustment for demographic factors.

The efficient frontier changes considerably when adjustments are made for the trial’s demographics —

only four of the seven combinations appearing in the adjusted frontier appeared in the unadjusted frontier,

and with significantly reduced median overall survival times. This indicates that trials often have better

outcomes due to the patient population, and that the outcomes should be adjusted when deciding which

treatments are best.

6 Discussion and Future Work

We believe that our analytics-based approach has the potential to fundamentally change the design process

for new chemotherapy clinical trials. This approach can help medical researchers identify the most promising

drug combinations for treating different forms of cancer by drawing on previously published clinical trials.

This would save researchers’ time and effort by identifying proposed clinical trials that are unlikely to

succeed and, most importantly, save and improve the quality of patients’ lives by improving the quality of

available chemotherapy regimens.

There are some limitations to our approach. While we show that we can predict future clinical trial
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outcomes even if the exact combination of drugs being predicted has never been tested in a clinical trial

before, a limitation is that there may be undesired outcomes due to combining drugs for the first time that

our models are unable to capture. Another important limitation is that even though we suggest drug and

dosage combinations for future trials, a phase I trial would still need to be performed to determine if the

combination is safe and we do not consider the costs involved. Additional limitations are that we are not

able to use patient-level data, we do not incorporate advanced trial designs (such as sequential trials), we

do not generate inclusion/exclusion criteria for patients in the study, and we cannot guarantee that the

drug combinations that we suggest are biologically feasible. Finally, our approach learns from and proposes

clinical trials, which generally enroll healthier than average patients. Additional work remains to evaluate

suggested treatments in the general population.

Despite these limitations, the models presented to predict survival and toxicity given demographic

information and chemotherapy drugs and dosages represent the first application of data mining techniques

to suggest new clinical trials. Our modeling results show that we can successfully predict future clinical trial

outcomes using past data. The optimization models we proposed will open new frontiers in the design of

clinical trials, enabling us to generate new suggestions for clinical trials instead of being limited to providing

predictions of the effectiveness of proposed trials.

We have identified some areas of future work. We see the setting of an online learning problem as

an interesting and challenging future direction. Additionally, automated information extraction could be

explored as a more scalable way of extracting the data from the clinical trial papers. This work can also

be extended to different types of cancers, and could be enhanced by using individual patient data.
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A Data Preprocessing

We performed a series of data preprocessing steps to standardize the data collected from clinical trials.
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A.1 Performance Status

Performance status is a measure of an individual’s overall quality of life and well-being. It is reported in

our database of clinical trials predominantly using the Eastern Cooperative Oncology Group (ECOG) scale

(Oken et al. 1982), and less often using the Karnofsky performance status (KPS) scale (Karnofsky 1949).

The ECOG scale runs from 0–5, where 0 is a patient who is fully active and 5 represents death. Among

the 483 treatment arms evaluated in this work, 414 (85.7%) reported performance status with the ECOG

scale, 68 (14.1%) reported with the KPS scale, and 1 (0.2%) did not report performance status.

In the clinical trials considered, patients with ECOG score ≥3 are rare; nearly 90% of the trial arms

have no patients with scores in this range. As a result, we develop a weighted performance status score

truncated at 2 as follows: if p0, p1 and p≥2 are the proportions of patients in the trial with ECOG scores of

0, 1, and at least 2, respectively, then our weighted performance status variable is given by p1 + 2p≥2.

In 92 treatment arms, the proportion of patients with ECOG score 0 and 1 was reported as a combined

value. To compute the weighted performance score for these arms, we first obtain an estimate of the

proportion of patients with ECOG score 0 and score 1, based on the proportion of patients with score 0 or

1. This estimation is done by taking the n = 292 trials with full ECOG breakdown and nonzero p0 + p1

and fitting a linear regression model to estimate p0/(p0 +p1) from the logit of p0 +p1. For the 16 treatment

arms with the proportion of patients with each KPS score reported, we first perform a conversion from the

KPS scale to the ECOG scale based on data in Buccheri et al. (1996) and then calculate the weighted score

as before. For treatment arms reporting performance status with other data groupings, the combined score

is marked as unavailable. In total, 77 trial arms (15.9%) were assigned a missing score.

A.2 Grade 4 Blood Toxicities

We need to compute the proportion of patients with each Grade 4 blood toxicity to compute the proportion

of patients with a DLT, as defined in Section 2.2. Two of the most common blood toxicities, leukopenia and

neutropenia, are rarely reported together due to their similarity (neutrophils are the most common type of

leukocyte). Because neutropenia is more frequently reported than leukopenia in clinical trial reports, we

chose this as the common measure for these two toxicities. We trained a linear model using the proportion

of patients experiencing Grade 3/4 leukopenia to predict the proportion of patients experiencing Grade 4

neutropenia, training on the 138 arms that reported both proportions. This model had R2 = 0.727, and
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we used the model to convert data from 98 treatment arms that reported leukopenia toxicity data but not

neutropenia.

Many treatment arms report the proportion of patients with a Grade 3/4 blood toxicity but do not

provide the proportion of patients specifically with a Grade 4 blood toxicity. For neutropenia, we built a

quadratic model with R2 = 0.868 to predict the proportion of patients with Grade 4 neutropenia given

the proportion with Grade 3/4 neutropenia, training on the 211 arms reporting both values. Similarly, we

trained linear models to predict the proportion of patients with Grade 4 thrombocytopenia, anemia, and

lymphopenia using the proportion of patients with Grade 3/4 levels of these toxicities. These models were

trained on 302, 248, and 8 arms, respectively, that reported both values and had R2 values of 0.669, 0.260,

and 0.035, respectively. The models for neutropenia, thrombocytopenia, anemia, and lymphopenia were

used to compute the proportion of patients with a Grade 4 toxicity in 118, 93, 99, and 3 treatment arms,

respectively.

A.3 Proportion of Patients with a DLT

The fraction of patients with at least one DLT during treatment cannot be calculated directly from the

individual toxicity proportions reported. For instance, in a clinical trial in which 20% of patients had Grade

4 neutropenia and 30% of patients had Grade 3/4 diarrhea, the proportion of patients with a DLT might

range from 30% to 50%. Here we compare approaches for computing the proportion of patients experiencing

at least one DLT. We consider five options for combining the toxicities:

• Max Approach: Label a trial’s toxicity as the proportion of patients with the most frequently

occurring DLT. This is a lower bound on the true proportion of patients with a DLT.

• Independent Approach: Assume all DLTs in a trial occurred independently of one another, and

use this to compute the expected proportion of patients with any DLTs.

• Sum Approach: Label a trial’s toxicity as the sum of the proportion of patients with each DLT.

This is an upper bound on the true proportion of patients with a DLT.

• Grouped Independent Approach: Define groups of toxicities, and assign each one a “group score”

that is the incidence of the most frequently occurring DLT in that group. Then, compute a toxicity

score for the trial by assuming toxicities from each group occur independently, with probability equal
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to the group score.

• Grouped Sum Approach: Using the same groupings, compute a toxicity score for the trial as the

sum of the group scores.

For the grouped approaches, we use the 20 broad anatomical/pathophysiological categories defined by

the NCI-CTCAE v3 toxicity reporting criteria as the groupings (National Cancer Institute 2006).

We evaluate how each of these five approaches do at estimating the proportion of patients with Grade

3/4 toxicities in clinical trials that report this value given the individual Grade 3/4 toxicities. Because there

is a strong similarity between the set of Grade 3/4 toxicities and the set of DLTs, we believe this metric

is a good approximation of how well the approaches will approximate the proportion of patients with a

DLT. 40/482 (8.3%) of trials report this value, though we can only compute the combined metric for 36/40

(90%) due to missing toxicity data. The quality of each combination approach is obtained by taking the

correlation between that approach’s results and the combined grade 3/4 toxicities.

Combination Approach Correlation
Grouped Independent 0.893

Independent 0.875
Max 0.867

Grouped Sum 0.843
Sum 0.813

Table 5: Correlation of estimates of total Grade 3/4 toxicity to the true
value.

As reported in Table 5, all five combination approaches provide reasonable estimates for the combined

toxicity value, though in general grouped metrics outperformed non-grouped metrics. The best approach

is the “grouped independent approach,” because it allows the best approximation of the combined Grade

3/4 toxicities. We use this approach to compute the final proportion of patients experiencing a DLT.

If one or more of the DLTs for a trial arm are mentioned in the text but their values cannot be extracted

(e.g. if toxicities are not reported by grade), then the proportion of patients experiencing a DLT for that

trial arm is marked as unavailable. This is the case for 106/483 (21.9%) of trial arms in the database.
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B Column generation approach

The optimization model (4) in Section 4.2 solves very slowly when asked for even a modest number of

suggestions, due to the symmetry in the formulation of W. Here, we present a fast column generation-

based approach to generate approximate solutions to (4).

Define variables δt associated with each feasible (zt,ut,vt) ∈ Ŵ. Let T be the set of all drug tuples of

size N , and let VR be the set of all feasible treatment indices of treatments using tuple R ∈ T . Finally let

U be uncertainty set for βz, as defined in (4a) and (4b). Then (4) can be reformulated as:

max
δt

min
βz∈U

∑
t

n∑
i=1

(βzi z
t
iδ
t + β̄ui u

t
iδ
t + β̄vi v

t
iδ
t) (5)

subject to
∑
t

δt = k, (5a)

∑
t∈VR

δt ≤ 1, ∀R ∈ T, (5b)

δt ∈ {0, 1}, ∀t. (5c)

Constraint (5a) requires that we select k different treatments, and constraint (5b) prevents us from

selecting more than one treatment with the same set of drugs. As an approximation, we consider a relaxed

version of (5), where constraint (5c) is replaced with 0 ≤ δt ≤ 1. This provides an upper bound on the

optimal solution. Then by taking the dual of the inner problem, we can rewrite (5) as a linear optimization

problem. We solve this problem using column generation.

To obtain a final set of suggestions, we then solve a restricted version of (5), by considering only the set

of δt variables that we have collected through column generation. We require the δt to be binary, optimally

selecting between the current columns. This provides a lower bound on the optimal solution to the problem,

since some of the columns in the true optimal solution might not be in the current master problem. This

approach allows us to compute a worst-case gap between approximate solutions to (5) and the optimal

solution.

To evaluate the efficiency and solution quality of the column generation approach, we solved the model at

the beginning of 2010 for tuple size N = 3 and a range of suggestion counts k and robustness parameters Γ.

A limit of 10 seconds was imposed for solving the restricted version of (5), but this limit is rarely met and was
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not binding in this analysis. Results were compared with a mixed integer programming formulation of (4).

Models were implemented using the Gurobi C++ interface (Gurobi Optimization 2013), and experiments

were run on an Intel Core i7-860 (2.8 GHz) with 16 GB RAM. A computational limit of 30 minutes was

applied for each model.

Results are given in Table 6. Internally calculated optimality gaps (labeled “procedure gaps” in the

table) for the column generation approach were uniformly small, and runtimes dominated those of the

direct MIP formulation of (4) for moderate and large values of k. When possible to verify, the column

generation approach returned optimal solutions to the problem.

Column Generation Direct MIP

k Γ Runtime Procedure
Gap (%)

Opt. Gap
(%) Runtime Procedure

Gap (%)
Opt. Gap

(%)
5 0 0.51 0 0 14.26 0 0
5 1 0.49 0 0 18.75 0 0
5 2 0.49 0.067 0 15.37 0 0
5 3 0.60 0.269 0 17.82 0 0

10 0 1.25 0 0 > 1800 3.305 0
10 1 1.33 0 0 > 1800 4.587 0
10 2 1.39 0 0 > 1800 5.171 0
10 3 1.78 0.091 n/a > 1800 4.872 n/a

20 0 3.00 0 0 > 1800 14.046 1.542
20 1 2.84 0 0 > 1800 12.688 0.825
20 2 3.19 0 0 > 1800 12.186 0.400
20 3 3.72 0 0 > 1800 12.772 0.832

Table 6: Computational results for the column generation and direct MIP
approaches for tuple sizeN = 3, at a range of suggestion counts k and robust-
ness parameters Γ. Runtimes are in seconds. Procedure gaps are calculated
internally for each algorithm between the best solution and internal upper
bound. Optimality gaps are between the algorithm solution and true optimal
solution, when possible to verify (otherwise labeled n/a).
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